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Investigation of the statistical properties of solutions of differential 

equations with random. time-varying parameters is a complicated task. 
Closed expressions for statistical characteristics (moments in particular) 
can be obtained only in those cases when a solution of an equation can be 
written as an expliclte expression whose parameters are arbitrary func- 
tions of time. This indirect method of investigating the properties of 

solutions is used for the first order differential equations whose co- 
efficients are random functions of time and whose integration has been 
carried out through the separation of variables. This kind of investfga- 
tion has been applied to a certain linear equation by Tikhono? fl] . For 
the second order equations, however, where the coefficients are random 
functions of time. a general solution cannot be obtained and the indirect 
method of investigating the statistical properties of solutions is not 
possible. 

BY using approximate methods based on assumptions of slow variation 

of parameters, of small fluctuations of parameters, etc. solutions can 
be found for a much wider class of differential equations. This in turn 
permits an estimate of statistical properties of these solutions (see, 
for example, [2-51). 

We consider here the second order differential equation 

(1) 

where c(t) is a random function of the time. and ~1 is a small parameter. 
The correlation function 

R (AtI = 8 (t + At) E (2) 
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is considered to be known and the mathematical expectation of e(t) is 

assumed to be equal zero 

E (t) = 0 

When k(t) is a periodic function of time, then we have the well known 

classical case of Parametric resonance (see, for example, [Sl). The case 

of c(t) being a random function has been studied in the book by 

Stratonovich [2], and certain properties of solutions in this case have 

also been derived in [3,41. 

By the conventional substitution of new variables 

Equation (1) is reduced to 

g + z = ‘-Et (T) z ( El 
e=l+ > (2) 

It is assumed that n << 1. Since E is a small parameter, the solution 

of Equation (2). will approach the harmonic solution; consequently, it is 

convenient to seek the solution in the form 

z (r) = a (t) cos t + b (t) sin t (3) 

We shall initially construct an approximate solution of the well de- 

fined problem, which consists of finding a(r) and b(T), when E(T) is an 

arbitrary given function of time. Applying the method of Lagrange and 

operating on the right-hand side as if it were a known function of time, 

we obtain the derivatives of the functions a(r) and b(T) 

da 
- =~f (.t) z(t) sin t, dr 

db 
dt = -EC (t) z (r) cos r (4) 

Substituting (3) on the right-hand side we obtain 

da 
- = et (r) (a sin t 60s t + b sin2 z) 

dr 
$ = - et (z) (a co9 T + b sin r cos ~5) (5) 

Writing the expansions of a(T) and b(T) in powers of E we have 
(6) 

u (t) = u(O) (r) + ea(‘) (r) + eaa12) (r) + . . , b (z) = b(O) (t) + Eb(‘) (t) _1- ezb(?) (T) _1- . 

Substituting the above expansions in Equations (5) and equating the 

coefficients of like powers of E, we obtain the recurrent system of equa- 

tions 
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da(‘) dbco) 
-=o 
dt ’ 

-=o 
dt 

da(l) 
- = E (T) (a(O) sin T cos T + b(O) sin* T) 

,,tF 
__ = - f (T) (u(O) co9 T + b(O) sin T cos T) 

do@ 
yg = E (T) [a(l) (T) sin T cos z + L(“) (7) sin* T] 

db@’ 
x = - E (t) [a(‘) (T) COS* Z f b(l) (T) SiIlT COS T] 

Hence 

. . . . . . . . . . . . . . . . . . . . . . . 

(7) 

a(O) (T) = a(O) (= const), /J(O) (T) = b(O) (:- consti 

+ 5 

a(” (T) = ato) s t (TI) sin Tl cos Tl dTl + b(O) 
s 

E (Tl) sin2 Tl dtl 

50 70 
5 5 

b(l) (T) = - @) 
s 

f (Tl) cos* Tl d,q - b(O) 
s 

% (zl) sin T1 cos TI dT1 

T* 'F. 
5 (8) 

U@) (T) = 
s 
' a(l) (Tl) f (q) sin 71 cos 71 dr1 f 

s 
b(l) (‘cl) 5 (~1) sin’ TI drl 

5. 50 
7 1 

b@) (T) = - 
s 

a(‘) (tl) 5 (Tl) Cosa Tl drl - 
s 

b(l) (rl) E (Tl) sin ~1 cos TI dsl 

f* +a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

We shall next consider the values of Z(T) and consequently the values 
of a(T) and b(T) in one period intervals, that is at the following 
instants of time: T = 0, 27~. . . . , 2r( i - l), 2ri. . . . . Let us see what 
happens when the instant of time changes from T = 2rr( i - 1) to T = 2wi. 

Let 

Q Ir=*n(i_l) == ‘i-1 = ’ (0’ 

b lrc2n(i_l) = bi_l = b(O) , dk’ )n=2z+_l) = b(k’ k=m(i-1) = ’ (k=1,2,...) 

Then 

ai = a 1 - a(” + Ea!‘) + E2a!2’ i_ 
r=2ni -- i 1 1 

. * . , bi = b jrz2_i = by) + eb{‘) + .9bj2) + . . . 

Here 
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~21”) = ai_l, b!O) = b. 1 
L-1 (9) 

2x 2r. 

a(il) = a\') i E [27x (i - 1) -t zl] sin r~ cos tl dzl f bj”) 5 E [2n (i - 1) + TI] sin” ~1 drl 
0 0 

2x 

b!') = 
1 - a?) 5’ 5 [2n (i - 1 j -+ rl] cos2 ~1 dr1 - by) 1 E [2n (i - i)-t_rl] sin r1 cos tl dr1 

0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

We shall now examine statistical properties of the solutions when c(-r) 
is a random function of time. The initial conditions at T = 2n( i - 1) 

are also assumed to be random and the mathematical expectation of oi _ 1 
and bi_l will be zero 

i+ = bi_l = 0 (101 

It is obvious that in this case we shall get 

which would remain valid for any i. Averaging over the set we obtain for 

the second correlation moments of Oi and bi 

- - -- 
2 = Up)2 + 2eaj”)al’) + 19 (ai1)2 + 2a(io)ai2)) + . . . , 

q;“p 
-- 

+ 2ebp)bi’) + e2 (bj’j2 + 2b;‘)bj*)) + . . . (12) 
- -- - - 

qi :- @)by) + E (ai”)bj’) + bj”)ai’)) + .@ (ai”)bi2) + ai’)bi’) f bp)ai2)) 

At any given stage the initial conditions oi (0) and bit’) and the co- 

efficients ai and bit’) (k = 1, 2, . . .) will be not, in general, un- 
correlated. We shall assume further that the correlation interval of 
t(v) is considerably smaller than the period. Taking into account (11) 

we obtain 

-- 
aiO)ap) = a!‘) a!‘) = 0 

1 1 

Consequently, the systems of Equations (12) can be written in the 

form 

-- -. 
+ ,2(b!‘)2+2b!o)b!2) )-+, * , , . . 

- -- - 
a. = 12 a!“)b!o) 1 z +$-(a!O)b!2) t 1 + u!~)(,!‘) , 1 + b!O)bi2) ‘1 1 ) +. . 

(13) 

(14) 

Retaining only the second order terms with respect to e, the above 
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(15) 

2n 2% 

. Js= 2 
s 

sin TI cos r1 dq 
s 

cosa taR (~1 - “cg) drs (161 

0 0 

The system (IS) is a sfstem of finite difference equations with re- 

spect to tb@ correlation moments 0i2, big and Oibi. Since c(T) is a 

stationary random function, the expressions J1, +,., J6 are independent 

of i. the solution in this case [TI is of the form 

The characteristic values ql. fjz and q3 are the roots of the equation 

If the second order terms (with the multiplier g2) are neg:lected, 

then ql = qg = q3 = 1. which means that E(T) does not influence the 

stability of the system controlled bY Equations IS). This latter result 

can also be derived from the formulas of Stratono~~ch [21. When ~(TZ is 

not 8 narrow band signal with slowly or little changing phsse, then, 

within the first order terms. damping remains constant. 

In tin case under consideration (within the seoond order terms) we 

obtain q 1 # q2 # q3 # 1. The statistical properties of the solutions of 



1150 I.B. Chelpanou 

(1) are determined from the transformed characteristic values 

(i 

we 

!19) 

In order that the solution is stable it is necessary that all Igil < I 

= 1, 2, 3). 

For the case when the correlatjon function of the variable <(T) is 

f$(A+e+IArI (20) 

can carry out calculations to the end. 

Calculating the integrals (16) we obtain 

_- e--2+ )] 

(24) 
-I 1 

JI = 2p (ps + 4) 
[ 
a W + 8) - p (@z + 4) 

4 (P2 + w (I _ e-_2np )J 

2 Js w + 2) = pl: 
4 

1 /T - 
psf4 (l--e 

-24 ,] 

1 

JO’= 23 
c 

8 (Pa + 2) 
n -p cpt + 4j2 (1 -e- a@ I] 

As has been mentioned earlier, the interval of correlation of t(~) is 

assumed to be small, that is p >> 1. For this reason we shall retain in 

Expressions (21) only terms of the first order with respect to p-1. We 

shall get then 

3Jr 
Jz z Ja zz 2p , 

Jr 
Jgz --, 

P 
Js = Jb z 0 (22) 

It is easily seen 

solved independently 

istic value equals 

that the last equation of the system (15) can be 

of the remaining two. The corresponding character- 

n 
q1zsi--_s- P (23) 

The rema!ning two equations of the system (15) are coupled. The cor- 

responding character istic values are 

The transformed characteristic value largest in absolute value 
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determines the statistical stability of the solution of (1). 

When E3 < 1, that is when @.sW2 > 0.68, the mean square of the ampli- 

tude is decreasing and the solutions of (1) are statistically stable. 

When e3 > 1, that is when r@ed2 < 0.68, the mean square of the ampli- 

tude grows without bounds and the solutions are unstable. 

Let us mention that for the transformed characteristic value corre- 

sponding to be mutual correlation moment a .b 1 i’ whether the condition of 

stability is satisfied or not, we have always 

E1=i-2nn--2 +<i 

This means that the correlation between the orthogonal components is 

decreasing with time, that is after a surficiently great lapse of time 

the phase will be equally probable, becoming independent of its initial 

distribution. 
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